Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica
نویسندگان
چکیده
BACKGROUND Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. RESULTS High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. CONCLUSION Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common, tropical tree over multiple habitats and provide information for managers of a successional forest in a protected area.
منابع مشابه
Pollinators and pollen dispersal of Piper dilatatum (Piperaceae) on Barro Colorado Island, Panama
The genus Piper is an important component of tropical forests worldwide. Many Piper species have been reported as self-compatible (Figueiredo & Sazima 2000), and many have the ability to reproduce asexually, forming clonal aggregations (Grieg 1993). Furthermore, the main dispersers of Piper (bats) transport whole infructescences to feeding roosts (Fleming & Heithaus 1981), tending to disperse c...
متن کاملPartitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens.
Insights into processes that lead to the distribution of genetic variation within plant species require recognition of the importance of both pollen and seed movement. Here we investigate the contributions of pollen and seed movement to overall gene flow in the Central American epiphytic orchid, Laelia rubescens. Genetic diversity and structure were examined at multiple spatial scales in the tr...
متن کاملSpatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae) Inhabiting Neotropical Forests
Wind-borne pollinating wasps (Agaonidae) can transport fig (Ficus sp., Moraceae) pollen over enormous distances (> 100 km). Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru) for the free-standing fig...
متن کاملEstimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.
The scale of seed and pollen movement in plants has a critical influence on population dynamics and interspecific interactions, as well as on their capacity to respond to environmental change through migration or local adaptation. However, dispersal can be challenging to quantify. Here, we present a Bayesian model that integrates genetic and ecological data to simultaneously estimate effective ...
متن کاملClimatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015